システムダイナミクス
システムダイナミクス図の主な要素は、フィードバック、在庫へのフローの蓄積、および時間遅延です。
システムダイナミクスの使用の実例として、革新的な新しい耐久消費者製品を導入する予定の組織を想像してみてください。 組織は、マーケティングと生産計画を設計するために、可能な市場のダイナミクスを理解する必要があります。
因果ループ図編集
システムダイナミクス方法論では、問題またはシステム(例えば、生態系、政治システムまたは機械システム)は、因果ループ図として表すことができる。 因果ループ図は、すべての構成要素とそれらの相互作用を持つシステムの単純なマップです。 相互作用とその結果としてのフィードバックループ(下の図を参照)をキャプチャすることによって、因果ループ図はシステムの構造を明らかにします。 システムの構造を理解することで、一定の期間にわたるシステムの動作を確認することが可能になります。
次のように新製品の導入の因果ループ図が表示される場合があります:
この図には二つのフィードバックループがあります。 右の肯定的な補強(ラベルされたR)ループは、より多くの人々がすでに新製品を採用していることを示し、口コミの影響が強くなります。 製品へのより多くの参照、より多くのデモ、およびより多くのレビューがあります。 この正帰還は育ち続ける販売を発生させるべきである。
左の第二のフィードバックループは、負の補強(または”バランス”であり、したがってbとラベルされています)です。 なぜなら、より多くの人々が採用するにつれて、潜在的な採用者はますます少なくなるからです。
両方のフィードバックループは同時に動作しますが、異なる時間には異なる強度を持つ可能性があります。 したがって、最初の年に売上が伸び、その後の年に売上が減少することを期待するかもしれません。 しかし、一般的に因果ループ図は、視覚的表現だけからその動作を決定するのに十分なシステムの構造を指定していません。
株式とフロー diagramsEdit
因果ループ図は、システムの構造と動作を視覚化し、システムを定性的に分析するのに役立ちます。 より詳細な定量分析を実行するために、因果ループ図をストック図とフロー図に変換します。 ストックとフローモデルは、定量的な方法でシステムを研究し、分析するのに役立ちます; このようなモデルは、通常、コンピュータソフトウェアを使用して構築され、シミュレートされます。
株式は、時間の経過とともに蓄積または枯渇する任意のエンティティの用語です。
株式は、時間の経過とともに蓄積または枯渇する任意のエ フローは、株式の変化率です。
この例では、潜在的な採用者と採用者の二つの株式があります。 新しい採用者:一つの流れがあります。 すべての新しい養子縁組のために、潜在的な養子縁組の株式は一つずつ減少し、養子縁組の株式は一つずつ増加します。
EquationsEdit
システムダイナミクスの本当の力は、シミュレーション スプレッドシートでモデリングを実行することは可能ですが、このために最適化されたさまざまなソフトウェアパッケージがあります。
シミュレーションに関係する手順は次のとおりです:
- 問題の境界を定義する
- これらの株式レベルを変更する最も重要な株式とフローを特定する
- フローに影響を与える情報源を特定する
- メインフィードバックループを特定する
- 株式、フロー、情報源をリンクする因果ループ図を描く
- フローを決定する方程式を書く
- パラメータと初期条件を推定する。 これらは、統計的方法、専門家の意見、市場調査データ、またはその他の関連する情報源を使用して推定することができます。
- モデルをシミュレートし、結果を分析します。
この例では、フローを介して二つの株式を変更する方程式は次のとおりです。
Potential adopters = ∫ 0 t -New adopters d t {\displaystyle \ {\mbox{Potential adopters}}=\int _{0}^{t}{\mbox{-New adopters }}\,dt}\ {\mbox{Potential adopters}}=\int _{{0}}^{{t}}{\mbox{-New adopters }}\,dtAdopters = ∫ 0 t New adopters d t {\displaystyle \ {\mbox{Adopters}}=\int _{0}^{t}{\mbox{New adopters }}\,dt}\ {\mbox{Adopters}}=\int _{{0}}^{{t}}{\mbox{New adopters }}\,dt
離散timeEditの方程式
離散時間のすべての方程式のリスト、各年の実行順、1年から15年の順に:
1 ) Probability that contact has not yet adopted = Potential adopters / ( Potential adopters + Adopters ) {\displaystyle 1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})}1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})2 ) Imitators = q ⋅ Adopters ⋅ Probability that contact has not yet adopted {\displaystyle 2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}}2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}3 ) Innovators = p ⋅ Potential adopters {\displaystyle 3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}}3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}4 ) New adopters = Innovators + Imitators {\displaystyle 4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}}4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}4.1 ) Potential adopters − = New adopters {\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}{\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}4.2 ) Adopters + = New adopters {\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}{\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}
1 ) Probability that contact has not yet adopted = Potential adopters / ( Potential adopters + Adopters ) {\displaystyle 1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})}1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})2 ) Imitators = q ⋅ Adopters ⋅ Probability that contact has not yet adopted {\displaystyle 2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}}2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}3 ) Innovators = p ⋅ Potential adopters {\displaystyle 3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}}3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}4 ) New adopters = Innovators + Imitators {\displaystyle 4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}}4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}4.1 ) Potential adopters − = New adopters {\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}{\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}4.2 ) Adopters + = New adopters {\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}{\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}
1 ) Probability that contact has not yet adopted = Potential adopters / ( Potential adopters + Adopters ) {\displaystyle 1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})}1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})2 ) Imitators = q ⋅ Adopters ⋅ Probability that contact has not yet adopted {\displaystyle 2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}}2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}3 ) Innovators = p ⋅ Potential adopters {\displaystyle 3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}}3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}4 ) New adopters = Innovators + Imitators {\displaystyle 4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}}4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}4.1 ) Potential adopters − = New adopters {\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}{\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}4.2 ) Adopters + = New adopters {\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}{\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}
1 ) Probability that contact has not yet adopted = Potential adopters / ( Potential adopters + Adopters ) {\displaystyle 1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})}1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})2 ) Imitators = q ⋅ Adopters ⋅ Probability that contact has not yet adopted {\displaystyle 2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}}2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}3 ) Innovators = p ⋅ Potential adopters {\displaystyle 3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}}3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}4 ) New adopters = Innovators + Imitators {\displaystyle 4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}}4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}4.1 ) Potential adopters − = New adopters {\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}{\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}4.2 ) Adopters + = New adopters {\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}{\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}
1 ) Probability that contact has not yet adopted = Potential adopters / ( Potential adopters + Adopters ) {\displaystyle 1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})}1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})2 ) Imitators = q ⋅ Adopters ⋅ Probability that contact has not yet adopted {\displaystyle 2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}}2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}3 ) Innovators = p ⋅ Potential adopters {\displaystyle 3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}}3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}4 ) New adopters = Innovators + Imitators {\displaystyle 4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}}4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}4.1 ) Potential adopters − = New adopters {\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}{\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}4.2 ) Adopters + = New adopters {\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}{\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}
1 ) Probability that contact has not yet adopted = Potential adopters / ( Potential adopters + Adopters ) {\displaystyle 1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})}1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})2 ) Imitators = q ⋅ Adopters ⋅ Probability that contact has not yet adopted {\displaystyle 2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}}2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}3 ) Innovators = p ⋅ Potential adopters {\displaystyle 3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}}3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}4 ) New adopters = Innovators + Imitators {\displaystyle 4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}}4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}4.1 ) Potential adopters − = New adopters {\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}{\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}4.2 ) Adopters + = New adopters {\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}{\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}
1 ) Probability that contact has not yet adopted = Potential adopters / ( Potential adopters + Adopters ) {\displaystyle 1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})}1)\ {\mbox{Probability that contact has not yet adopted}}={\mbox{Potential adopters}}/({\mbox{Potential adopters }}+{\mbox{ Adopters}})2 ) Imitators = q ⋅ Adopters ⋅ Probability that contact has not yet adopted {\displaystyle 2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}}2)\ {\mbox{Imitators}}=q\cdot {\mbox{Adopters}}\cdot {\mbox{Probability that contact has not yet adopted}}3 ) Innovators = p ⋅ Potential adopters {\displaystyle 3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}}3)\ {\mbox{Innovators}}=p\cdot {\mbox{Potential adopters}}4 ) New adopters = Innovators + Imitators {\displaystyle 4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}}4)\ {\mbox{New adopters}}={\mbox{Innovators}}+{\mbox{Imitators}}4.1 ) Potential adopters − = New adopters {\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}{\displaystyle 4.1)\ {\mbox{Potential adopters}}\ -={\mbox{New adopters }}}4.2 ) Adopters + = New adopters {\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}{\displaystyle 4.2)\ {\mbox{Adopters}}\ +={\mbox{New adopters }}}
動的シミュレーション結果編集
動的シミュレーションの結果は、システムの動作は、古典的なs曲線形状に従う採用者の成長を持つことであろうことを示
採用者の増加は最初は非常に遅く、その後一定期間指数関数的に増加し、最終的には飽和が続きます。Div>
連続timeeditの式
中間値とより良い精度を得るために、モデルは連続時間で実行することができます:時間の単位数を乗算し、株式レベルを変更する値を比例的に分割します。 この例では、15年に4を掛けて60四半期を取得し、フローの値を4で除算します。
オイラー法では値を分割するのが最も簡単ですが、代わりにRunge–Kutta法などの他の方法を使用することができます。
トリメスター=1から60の連続時間の方程式のリスト:
- それらは、上記の離散時間の項の方程式と同じ方程式ですが、式4.1および4.2は次のように置 :li>
10 ) Valve New adopters = New adopters ⋅ T i m e S t e p {\displaystyle 10)\ {\mbox{Valve New adopters}}\ ={\mbox{New adopters}}\cdot TimeStep}10)\ {\mbox{Valve New adopters}}\ ={\mbox{New adopters}}\cdot TimeStep
10.1 ) Potential adopters − = Valve New adopters {\displaystyle 10.1)\ {\mbox{Potential adopters}}\ -={\mbox{Valve New adopters}}}
10.2 ) Adopters + = Valve New adopters {\displaystyle 10.2)\ {\mbox{Adopters}}\ +={\mbox{Valve New adopters }}}
T i m e S t e p = 1 / 4 {\displaystyle \ TimeStep=1/4}\ TimeStep=1/4
- 以下の株式とフロー図では、中間フロー”バルブの新しい採用者”は、式を計算します。
Valve New adopters = New adopters ⋅ T i m e S t e p {\displaystyle \ {\mbox{Valve New adopters}}\ ={\mbox{New adopters }}\cdot TimeStep}\ {\mbox{Valve New adopters}}\ ={\mbox{New adopters }}\cdot TimeStep